TruDi 3-150 is a revolutionary new MW Plasma CVD deposition system for low temperature growth of diamond and graphene based films. This system enables poly crystalline diamond compatible thin film growth over a very broad range of materials for device integration, biocompatible coatings and other advanced applications.

The system specifically enables the separate control of substrate temperature and plasma temperature/density.

The TruDi 3-150 incorporates diffuse, low pressure pulsed plasma technology for high quality diamond film growth at temperatures <450°C with high growth rates and true scalability for large area uniform films in R&D and production processes.

TruDi 3-150 accommodates circular substrates up to 150 mm (6 inches) in diameter which are loaded/unloaded manually. An integrated PLC enables stable long term operation with monitoring of system parameters and safety.

Nanocrystalline Microcrystalline Homoepitaxial Doped films Hydrogenation Oxidation Graphene

Applications

Low temperature deposition

Low temperature deposition of nanocrystalline diamond (NCD) layers with:

- High sp³ content
- Over large areas > 6inch
- Wafer bow less than 20 μm

Boron doped NCD

- Suitable for electrochemical applications
- Potential window > 3.5 eV
- Large current density
- B doping level > 2.10²¹ cm⁻³
- High sp³ content

Graphene based layer

Growth of transparent (>90%) graphene layers over large areas at low deposition temperatures is enabled due to NCS3-150's unique plasma conditions (combination of low electron energies (1.5eV), high plasma densities (>10¹¹ /cm³) and low power density).

Technical specification

Greater Frankfurt Area, Germany info@wl-coating.com // www.wl-coating.com

SEM image

NCD coated 6 inch wafer with AI & SiN₄ pattern prepared at temperatures <450°C

Transparent boron doped conductive NCD layers prepared at temperatures < 600°C on glass

